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LIQUID BEHAVIOR IN THE RESERVOIR OF THE
SOUND SUPPRESSOR SYSTEM

SUMMARY

A large water reservoir of rectangular plan form is part of a sound
suppression system projected for use in the static firings of the booster stage
of the Saturn V launch vehicle. Upon ignition of the rocket engines, a surge
wave is created in the water mass at the discharge side of this reservoir. The
surge wave will travel across the water surface and be reflected on the opposite
wall, and thus travel back and forth until it is eventually damped out by wall
and internal friction.

The characteristics of the surge wave are investigated by treating
first the response of the liquid to harmonic excitation of one side wall of the
reservoir; "admittance' is thus determined, with which the response of the
liquid to any arbitrary motion of the container wall can be obtained. Motion is
investigated for a rectangular and a sinusoidal velocity respectively of one
container wall. The liquid is considered incompressible, nonviscous, and
irrotational.

The velocity potential, free liquid surface displacement, velocity and
pressure distribution, fluid force and moment have been obtained for various
pulse durations; these results serve as design values for the reservoir struc-
ture. The wave form was computed electronically for a time coordinate with
one-sixteenth second increments. These increments yield the wave motion in
true time by assembling them in a film which shows quite lucicdly the behavior
of the liquid surface.

SECTION I. INTRODUCTION

A reservoir of five-million gallon capacity is part of the projected
sound suppression system of the Saturn V Static Test Facility. By injecting
large quantities of water into the exhaust jets near the engine nozzle exit, the
sound power generated by the exhaust jets will be reduced considerably (Fig. 1).
The high velocity of the exhaust creates a suction which causes the water to
flow, but also creates a surge wave in the container when the rocket engines



are ignited. The water system reacts as if one wall were suddenly moved.
However, the water level is kept constant during the operation; the surge wave
is of two-dimensional form. For this reason the motion of the liquid in the
rectangular container can be treated as that in a rectangular container of in-

finite width.

The container is considered to be of length a and filled with incom-
pressible liquid to a height h. To describe the real physical effect of the suc-
tion created by the firing of the rocket engines, one wall of the container is
assumed suddenly to move for a finite duration. The displacement yo of the
wall caused by this motion is considered small compared to the length of the
container; the level of the undisturbed liquid thus remains in the average at its

location x = 0 (Fig. 2).

The problem posed is to determine the characteristics of the surge
wave. To resolve this problem, the characteristics of the liquid motion are
investigated by treating first the response of the liquid to harmonic excitation
of one side wall of the basin. By determining the "admittance, ' the response
of the fluid to an arbitrary motion of the container wall can be obtained. This
is performed for a rectangular and a sinusoidal velocity respectively of one
container side wall. The velocity potential of the liquid is determined both -
for the time interval of the pulse and for the time after completion of the pulse.
The free fluid surface displacement, velocity and pressure distribution, fluid
force and moment can then be determined and serve as design values for the

reservoir structure.

The motion of an ideal incompressible liquid in a rectangular container
of infinite length filled to a height h is then considered. A cartesian coordinate
system Oxyz is introduced such that the yz plane is located in the quiescent sur-
face of the liquid perpendicular to the gravity vector. The x=axis is pointing
vertically upward. The height of the free liquid surface above the plane x =0
is called X =X (y,t); and is caused by some disturbance of the container or
one of its parts, such as a side wall.

The velocity of the ideal, incompressible liquid in the container can be
represented as a gradient of a velocity potential ¢, which, due to the continuity
equation has to satisfy the Laplace equation. The normal velocity of the liquid
at the container walls is equal to that of the container wall. The free fluid sur-
face boundary condition is described by the kinematic and dynamic condition,
of which the first expresses that the normal velocity of the fluid particles at
the free surface is equal to the normal velocity of the free fluid surface. The
latter condition is obtained from the unsteady Bernoulli equation for the pres-



sure p equal to the ambient gas pressure py. It is the first integral of the
Euler equation.

The problem is then to find those solutions from the class of harmonic
functions satisfying the container wall boundary conditions which also satisfy
the kinematic and dynamic condition. By proper transformation, the wall
boundary conditions can be made homogeneous, and the problem is then to
solve the Poisson equation with these boundary conditions.

The problem of free fluid oscillations in a rectangular container has
been treated by Rayleigh [1], in 1876. In recent years, the problem of forced
fluid oscillations has grown in importance [2, 3, 4]. Lorell [5] gave the
linearized flow of a liquid in a rectangular container of infinite length for trans-
latory harmonic excitation of the complete container. The purpose of the
present investigation is to determine the liquid response (such as free fluid
surface amplitude, pressure and velocity distribution, fluid force and moment)
caused by pulse excitation of one container side walil.

SECTION Il. RESPONSE OF LIQUID IN A RECTANGULAR
CONTAINER OF INFINITE WIDTH DUE TO HARMONIC
EXCITATION OF ONE SIDE WALL

Before proceeding to arbitrary wall excitation the solution for harmonic
excitation must be known. Treating the liquid as incompressible, irrotational
and inviscid results in a presentation of the velocity as a gradient of a velocity
potential ¢ that satisfies the Laplace equation

vig=0. (2.1)
This equation has to be solved together with the boundary conditions of the pro-

blem. At the tank walls the normal velocity of the liquid and the container are
equal to each other; after linearization it is obtained

%yi) =0 at the side wall y =0 (2.2)
99 _ ¢ jqelft at the side wall y = a (2.3)
oy Yo

0

ﬁ = 0 at the container bottom x = -h. (2.4)



The free fluid surface condition is obtained from the linearized kine-
matic condition 8¢/ 8x = 8x/ 8t and from the dynamic condition for p = 0 ob-
tained by eliminating the free fluid surface displacement X from the linearized
instationary Bernoulli equation 8¢/ 8t + gx +p/p = 0. Thus,

2
gt% +g g—f =0 at the free fluid surface x = 0. (2.5)

Here, g is the gravity constant. The displacement Y, is considered small in

order to maintain the undisturbed free fluid surface in the average at x =0

(i.e., a.h = (a =+ yo) + h™ which yields h™ ~ h(1¥F y_o) ; therefore, it should
a

be yo/ a << 1).

The transformation

2 .
¢(y,x,t)=[w<y,x> + myog;] ot (2.6)

makes the boundary conditions (2.2) and (2.3) homogeneous. Instead of the
Laplace equation (2.1), one has to solve the Poisson equation
iQ Yo

2y = — 2
vVew 3 (2.7)

with the transformed boundary conditions

gzk = = :
3y 0 aty =0, a (2.8)
QZB=0 at X = ~h (2.9)
ox

O 2, o3 Y = 1
g 5% SZZ,D 1&? Yo2a atx=0 (2.10)

A solution satisfying the boundary conditions (2. 8) is given by

¥(y,Xx) = Z A (x) cos (M y) . (2.11)
n=( n a



Introducing this expression into Poisson's Equation (2.7) yields

" o’y 2 1
An ()’c) > An(x) =0 forn=0 (2.12)
and
Yo
\ = — i 1
A0 ‘x) 1Q—a . (2.13)

This infinite set of ordinary differential equations in x has to be solved
with the boundary conditions (2. 9) and (2.10) which with (2. 11) yield

A_'(-h) =0 forn=0, 1, 2, ...... (2.14)
and iQlay
gA_'(0) - 2%A (o) = 2(-1) W‘l forn=1, 2, ...... (2.15)
iQ3y a
gA '(0) - Q% (0)=—f— . (2.16)

Here, the right-hand side of equation (2. 10) has been expanded into
a Cosine-Fourier-series and terms of the left-hand side of equation (2. 10) have
been set equal to those of the right-hand side. These become

2 %o - nr
i3
= — + o = ]
iQ Yo 22 > Z o CO8 (a y) (2.17)
n=1
where
i3y 2a(-1) "iQdy
a = & and «a = 2 (2.18)
o 3 n 7 n® )

The solution of equation (2. 12) with the boundary conditions (24. 14)
and (2. 15) together with n, = Q/ w L 28 the ratio of the exciting frequency to

the natural frequency of the liquid and w n2 = 3_2_71 tanh |n7 2— (see Table 1.)

is nr

; 2 am

1ng(£; n cosh [a (x + h)]

nr h \
a

A () =2(-1)" (2.19)

7r2n‘2(1 - nnz) cosh(



while that of equation (2.13) with the boundary conditions (2.14) and (2. 16)
is

1yO
Q

iQ ay,
- . 2,
- (2.20)

g

» |

Yo ,
Ao(x)=—1Q Z_a(x + 2xh) -

The velocity potential ¢ (y,x,t) caused by the harmonic excitation yoelQ t of

one tank wall (y = a) is, therefore, with (2.6) given by

_ ot Vil a _gh 1 2
o (y,Xx,t) yoe iQ om 6 202 2a(X + 2hx)
2
) n nT
+
Z (-1)" (1n : cosh [_a (x h)_] oS (1_1_75 ) (2.21)
n=1 n’ n’cosh(nr ) &

The free surface displacement, pressure distribution and velocity
distribution, as well as fluid force and moment can be determined from the
potential by differentiations and integrations with respect to the time and spatial

coordinates.

The surface displacement of the liquid which is measured from the
undisturbed position of the fluid is (Figs. 3, 4, 5 and 6)

- _ _ tfae) _ @  iat [yz_ a _gh
x(y.0) = g(at )x=0_ g Yo®  l2a T 6 7 a@?
n_ o »
2a = (D "y CoS szliy)
+ ﬂ.z (1 _nZ) nz . (2.22)
n=1 n

For very small << 1 and very large Q@ >> 1, the liguid surface regresses like

h iQt

— yoe . The pressure distribution at a depth (-x) is given by
- 0% o + it [y2 _a _gh 1
p PG P8 pgx + py %e oa 6 P2~ 2a (x* + 2hx)
2
22 w Tn cosh [%E' (x +7h)] nw
=5 ) (- " T o cos (= . (2.23)
T p=t T2 n? cosh (T)



The pressure distribution at the wall y = a is, therefore,

9 iQt | a gh

1
p = = -+  ———— 2
y=a pgx py Q% 3 o%a o (x* + 2hx)
2
2a oy T cosh [gﬂ (x +h)]
T 2 ) (1-n9 nm h (2.24)
n=1 n n cosh( )

and at the wall y = 0, it is (Figs. 7, 8 and 9)

i
Q2e ot —2—“h——2—a(x2+2hx)

Py—p™ ~PEX T P, 6 Q%

y=
a 2
2a 2 (1)17][l

) {1 - 2
T n=t ( nn)

cosh [%E (x + hg]

. (2.25)
2 n7rh
n® cosh a

At the container bottom (x = -h) the pressure distribution is

2 +
2a 6 Q°a 2a

_ 9 1Qt [ y° a gh n?
= + _ = _ -
1Dbot’com pgh py Qe [

+-—2 h

(2.26)
T o=t (1 -7 2)ncosh(—%—

2a 0 (1) n cos(mr_y)
) w)]

The fluid force is obtained from integration of the pressure along the sidewalls

F = - d 2.27
v _{ (pyza pyq)) x (2.27)

which with the fluid mass m = p ah yields the expression (Fig. 10)

- = my_ Qzelﬂt 2 Z tanh (2n -1)m a)] 2n C(2.28)
y n=1 (2n - 1) 7 E 1 -n?
2n - 1

The moment of the liquid about the center of gravity of the undisturbed
fluid is given by




o] a
h a
= - — -} - - —
Mz 41[ (py=a py=o) (2 X) dx Of Phottom (y 2-) dy
and yields the expression
— ) it i l 211 -1
MZ mag yoe 24h/a 73 Z & nzn—i)

tanh [(2n 1)1r_lL] ( (2n—1)7rh) )

—13 (2.29)
(2n - 1) (2n - 1)4
The velocity distribution is given by
_ 9% _ iQe _2 OZO n cosh [%ﬁ' (x + h)]nn sin(m)
v oy Yo Ty

n cosh (n_7r£) (1~ 2 a
2 n‘“) (2. 30)

At the left container wall (y = o) the velocity v is zero and at the right con-
tainer wall (y =a) it is yoiQ emt , which agree with the given boundary con-

ditions. The vertical velocity distribution is

2
. °0 . nmw n ;
+
_ ZXQ -y 19l | _X h . 2 z (-1)™ sinh [an(xh+h)]_ Do (m;y)
° ncosh(7r )(1—772)
a n
(2.31)

At the container bottom (x = -h) the velocity is u = 0, which agrees with the
boundary condition.

SECTION Il1. RESPONSE OF LIQUID DUE TO
ARBITRARY EXCITATION

To determine the response of a liquid with a free fluid surface in a
rectangular container of infinite length with one moving side wall caused by
an arbitrary nonperiodic excitation y(t), the function y is written into its
simple harmonic components by means of the Fourier integral



o0

3;(t)=;r1‘ ff y(r) cos Q(t - 7) dr d@
Q =0

The solution to the steady state problem yields the "admittance" of the fluid
system, which is combined with the components of the response of the liquid
to obtain the response of the system to the original nonperiodic excitation
functions. Then

c0

ff ¢ (y,%;9) y (1) cosQ (7 -t) drdQ
O —o0

®(y,x,t) =

SRTN

is the velocity potential of the liquid due to the nonperiodic excitation Sf(t) .

Therefore, by rewriting the potential (2.21) as

2
- yo _a 1 .. _ gh
o (y,X%X,t) yocos Qt o 6 o8 (x* + 2hx) ol

0 -1 ? 2
2a (-1) "n  cosh [r}% (x + h)] inr )
+ — cos

2 _ 2 Yy
T ‘n=1 (1 nn) n® cosh(m;—h> a

the "admittance' ¢ is given by

1 2 gh
—— + -
om (x* + 2hx)

= a
(p(YaX:Q)— %2a 6 Qza

2a f 1y Q2 cosh [%E(x+h)] nmw
(-1) (w 7 _ 92) , o b cos D y
n= n n“ cosh (T)

and the velocity potential for an arbitrary nonperiodic excitation Sf(t) yields

oo oo 9 a 1 h
I - oo (Z+ong - B

1
ey xt = T Of—'i 2a 6 Q’a

22 w n Q cosh L'ng_ (x+h)]
* T Z/_ (-1) (w 2—92)- 9 (nﬂ'h)
n=1 n n“ cosh

S (_n%_y) V(1) cos Q (r-t) drdQ.




A. RESPONSE OF LIQUID DUE TO SINGLE RECTANGULAR PULSE

A single rectangular pulse of magnitude A and duration to start-

ing att =o (Fig. 11) can be described by the Fourier-Integral

[> eI -]
T
y(t) = - f f v(T) cos ©(t - T) dT dQ
O =
With
v for 0 <t<t
Y o]
v (t) =
o for t>t
O
the expression obtained is
r Qt ot Yo singt(d Q to)
_ cos sinQ ty "o sin - cosQto
v(t) = f dQ + - f Q do

o

The velocity potential for rectangular pulse excitation is, therefore,

de .

\% 0 2 )
= =2 y o_a_ 1l e, ]cosﬂtsmszto
®(y,x,1) - f [Za 5 " 2a (x* + 2hx) 5 do
o ol h sinQ to cos Qt
- - d
2av n cosh[ ¥ (X+h)]cos(faf »y) o O cos Qt sin Qto
e Z (-1) nr h (w 2 _ 92) dQ
n=1 n® cosh ( ) 5 0
vy @ e N { 2 sinQt [1— cothO]
— - = - = +
T Of [Za 6 " 2a th)] S e
0 sith[i - cosQt J
A gh 0 -
o
T
. 223.VO Z (_1)n cosh[nﬁf (x+h)] cos (Llf'y) f £ sin Qt [1 - cos Q to]
773 9 l:mrh] (w _ 2)
n“ cosh o n

10



-

The occurring integrals can be solved with complex integration

methods (see Appendix).

The solutions are:

o0 cos 2t sin Qto
o dQ
o
S sin Qt cos Q t0
f S dQ
o

sin Qt[i - cos Qtoj
— dg

Q

00 sin Qto cos Qt
f N de
o
oo Q cos Qt sin Qto
— dQ

(o} n

Y4

for t<t

B

o} for t>t

o for t<t

% for t> to
s
2 for t>o
il
> for t<o

T
4t(21:0—1:) for t =t

t 2 for t=t
o (6 3

NI

%(t2 tt? for t<t

Et-‘c for t>t

2 (o] o

T

—cosw tcosw t for t <t
2 n no o
T™ .

—sinw tsinw t for t>t
2 n no o

i1



Tsinw tsinw t  for t<t
00 Q sin Q1 cos Qt 2 wn c‘)no or o
f' 3 7 dQ

w - Q
0 n

-Ecosw tcosw t for t>t
2 n no o

00 O sin 9t - gcos wnt for t>o0
f o gr de
o n
o for t<o

With these results, the velocity potential for excitation caused by a
single rectangular pulse of the container wall y = a is given by:

5 2t2 - 2tt +t 2
o} (0]

a gh
o(y,x,t) =v [Y— - = - —-(x2+2hx):| +
o} 0 2a 6 2a 4a ottt 2
o) o)
(3.2)

cosw (t -t) +cosw t
n o n

_ 32 f(_i)n cosh [Dam(x+h)] cos(%@y)
T

h
n=1 n? cosh (m; )

cosw t-cosw (t-t)
n n (¢}

where the upper line corresponds to values t < to and the lower line, to the

timet >t .
o

The free fluid surface displacement is

[ nm )
- . hv t—to/z av_ i( 1)n w cos| Ty et
= -7 i - 2
a0 t0/2 8T n=t " (3.3)

where F(t) = sin w nt + sin w N (t - to) ; the upper sign belongs to the time

interval t < to while the lower sign belongs to t > to.

The pressure in the container at a depth (-x) is given by
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t

n (-2
P = -pgx - pv g‘;_ 2

t

o

2
00 nT nm

+h) jc
+ %2 Z (_i)n wn cosh [aix hgcos (a y) F(t) ‘ (3. 4)

~ 2 m_nh
n=1 n° cosh ( a )

At the tank wall y = 0 the pressure distribution yields

ch t-t,
pY=0= TPEX TPV, a ¢ 2
o
2
0 nT
a n wn cosh a (x+h
2,0 et O L (x 2 (3.5)
= 9 nmw
n=1 n* cosh (—a—)

and at the container wall x = a the pressure distribution is

t-t
= _ - gn 0
Pia pgx = pv_ | T o
1;O
2
2§ [ﬂ-
+ = wncosh La (x +h)
7r - F(t) . (3.6)

At the container bottom x = -h the pressure distribution yields
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t-t
gh >

a to
-

pbotl;om = pgh-p Vo

a g n wn cos (nal.L y>
* =9 ), (1)

n=1 n? cosh (mr h) £ . -7

By integration of the appropriate pressure components, the liquid
force and moment can be obtained. The force in y-direction becomes

F o= -my |Z5) “2n-t

]F(t) ) (3.8)
y ° 1™ a2t~ (20-1)37 b/ a

The fluid moment about an axis parallel to the z-axis through the
center of gravity of the undisturbed liquid is

mav 00 w
- o 2n-1 (2n-1)r h
M, = T3 L (2n - 1)3 [tanh [ 2 ]
n=1
2 9 1
T (n-t)rh/a [cosh [(2n-1)7 h/ 4]~ 1J:, F(t). (3.9)

The velocity distribution in y-direction is given by

we 82 oy [t
o |a 0

N %i (_1)n cosh [%ﬂ” (x+h)] sin (m;y

n=1 n cosh (mr h )
a

b

\ cosw (t -t) +cosw t
n o n

cosw t - cosw (t-t)
n n o)

and in x-direction it is
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0P X +h {1}
Uy = -— =1y - ——
ox o a 0

nsinh[a(x+h)] nmy
o b cos
n cosh (T)

cosw (t ~t) +cosw t
n o n

(-1)

A8

cosw t - cosw (t-t)
n n o

B. RESPONSE OF LIQUID DUE TO A DOUBLE RECTANGULAR PULSE

In considering a rectangular double pulse, i.e., a pulse of con-
stant magnitude v, for a duration of t seconds with a constant magnitude -v,

for a duration of t, seconds (Fig. 11),

v for 0<t<t
o) o
= - <t<t +
v(t) vy for to t to ty
0 for all t > 1:0 +ty

This pulse can be described by the Fourier-Integral

(vt V1> © cos Qt sin th o +(VO n; Vi) e sin Qt(i—cos Qto>d

v(t) = S o Q
(o] (o]
w foo cos Rt sin @ (t_+t;) o T wsin Qt [1-cos Q (t * ti):](le
T o Q T S Q

The velocity potential for this pulse is then:
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(v +V_1> 0 2 a { cos Qt sin Qto
® (Y,X, t) = f [23. - E - E(XZ + ZhX)] o dQ
0 .
v 00 Lz a { cos Qtsin Q (to+ ty)
v _a _ 4 e,
T [Za s "2 (X th)] Q de

sin Qt [1—cos Qto]'

+(‘1<L"1)f°°[ﬁ_a _ -zLa(XZ-FZhX)]

T 2a 6 Q
o
0 sin Qt [1 - cos Q(t +t;)
_ﬂ-f[.yz__.a_'__l‘_(XZ_l_zhx)] [ 0 ]dQ
T o 2a 6 2a Q
(V + v o sin Qt cos Qt
e M) m) e g
T Ela Q3
o
<v0+ Vz) (h) o sin Qt [1 cos Qt]
_ 1 2 ao
T a Q

o cos 2t sin Q (to+ tl)

v h
+ ;L g (E) Of Q3 de
v h o gin @t [1 -cos £ (t +t1>J
* 7rL g(;) of Q°
o cos 2t sin Qt
2 (v D ()" COSh[T(X+h)}£IQQS<% >f g s
n=1 n? cosh = 0 “u
ur nr o sin Qt|l-cos Qt
+ 3(v +V1)Z( " cOShl:a‘t(X“fh)] cos,(ay)f : Z_EZ ]9
n=1 n? cosh n:wh o “n )
24 1 cosh [a (X+h)]cos (a y) w Q cos tsin Q (t +t1)
- "3V (-1) do
g 1n=1 n® cosh ~a f (“’n - %)
n cosh [Q}(x+h)]cqs (%EQ o © sin Qt[i—cos Q(to+ ti)]
C2 ., § gy sl oo ndes Wy T LoD o By
n=1 n” cosh ?h o n

16



In addition to the previous integrals others occur which can be solved
by the same complex method indicated in the appendix. These are:

© cos Qt sin Q (to+ t1) /2 for t< to+ t
f 3 de
o 0 for t> to + 1t
in Qt|1- Q(t +t 2 for t<t +t
foo s1? [ cos  ( o 1)]dQ n/ o Th
o Q
0 for t>t +1
o
© sin Qt [1-cos Q (t + tl)] (1/4) (2t +2t -t) fort<t +t
[ ag
0 (n/ 4) (t + t;) 2 fort >t +t
i + -/ 2 + <t +
foo Q cos Qi;sm Ss (to ty) . (-7/ )coswntcoswn(to t;) fort to ty
w - Q . .
+
o n (r/ 2) sinw nt sinw n(‘c0+1:1) fort > to ty
f°° sin @ (t +1t;) cos Qt (-m/ 4) [:t2 + (t + to)z:l for t <t +t;
7 de
© 2 (-v/2) t (t0+ t1) for t > t0+ t
o0 . 1
f Q sin Qt [1—cos Q(t0+ t1)_l
o 7 w 2-q? de =
n

- t + si t si + <t +
(-m/ 2) [coswn sinw smwn(to ti)] for t t0 ty

- + +
(-m/ 2) [cosw nt cosw nt cosw’n(‘cO ti)] for t> to t

With these results the velocity potential finally is found to be
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@(y,x,t)=[%—%—ix2+2hx€] l}o 0) + vy (4 :I

1 o2 42
o (2t -2t -t 2
-8y (e /e -2 )
to/4(t0—2t)
L / 3\
1 +1t,)2 - -t 2
;[ vt -2t -t * ]
vy J%[toz‘4tto+2t2‘2tt1+(to+tl)2] 5
1 2 - 2
I |
.
. 3
cosw t+cosw (t-t)
BV, & (1)™ cosh L% (x + h)J cos () ) et
ZZ a y. cosw t-cosw (t-t)
T g nr h n n °
n=1 n cosh( a )

\

avy f (—1)n cosh [Igr_ (x + h)],cﬁos (‘%.Ey)

v ) (=2} coshta X7 )Jcos 8 ¥
™ n=t n? cosh (____m;h)

cos w [t
n
\

cos cont - cos wn(t - tO)J

- - - (t +
cos w (t-t ) - cos wn[t (t, ti)j

é—cos wn(t - to) - cos wnE - (tO + tiﬂ'

N

~"

- (L * ti):l -cosw (t-t) J

In this equation the first line corresponds to the time interval 0 <t < to’ the

second, to the time interval to <t< to+ t; and the third line corresponds to

t>t +t1.
o

In the symmetric case when the container wall at y =a is moved the
same amount and with the same velocity to the left and right, the time inter-
vals are consecutively 0 <t < to’ to <t< 2to, and t > 2to. For this case

v, S Vi t = to and the velocity potential is
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<I>(y,x,t)=[f- - % - —21;(;8+2hx)] v, -1

2a 0
t? -
ghv0 ©
- 2 -4tt+3t2
2a o o
-t 2
o
(3.10)
avo i (—1)n cosh[%.m (x+ h)] cos (néz‘r_ﬁ
- — ,
T =t n® cosh (mr h )
: a
4 )
cosw t+2cosw (t-t) -cosw (£-21)
n n o n o]
écosw t-2cosw (t-t) -cosw (t-2t) g
n n o n o
- - + -
Lcoswnt Zcoswn(t to) coswn(t Zto)a
The free fluid surface displacement is
+
Voh t Voa o0 (—1)n 1a)ncos (néz.r‘y)
R=-—— (2t -ty + —>5) 3 F (1) (3.11)
a o gr = H n n
n=1
o
where .
sinwt+2sihw (t-t) -sinw (t-2t)
n n o n o
Fn(t)= smwnt - 2s1nwn(t—to) - smwn(t-Zto)

sihw t - 2sinw (t-t) + sinw (t-21t)
n n o n 0

The upper line represents the time interval 0 <t <t , the middle line, the
interval to <t<2 t0 and the lower line is valid for t > 2t0. Considering only

19



the first term of the surface displacement, it can be seen that the surface level
will sink during the time interval 0 <t < to and then rise again to its original

level in the second time interval to <t<2 to.

at a depth (-x) is given by

t

= h
p —pgx-pg(a) v, (2t -t
(o]

pvoa o (-1) n w cosh[%i(x + h)] cos (naf'y)

-T2
T n=1 n® cosh (ﬁ;l)

At the tank wall y = 0 the pressure distribution is

t
= - -p b v 2t -t
1;)y=o peX =Pela ] o 0
0

pvoa o (—1)nwncosh[_-ng'(x+h)]

F (1)
2
L= n’ cosh (mr h) B
and at the container wall x = a it yields
t
= - _pe(B 2t -t
py:a pPgx =pPg\a ] Vo o
0
pva o w coshl:llf:[IL (x + h)]
-— ) — F_(t)
T na=1 n? cosh (mr h ) n

At the container bottom x = -h the pressure distribution is

20

Fn(t) .

The pressure in the container

(3.12)

(3.13)

(3.14)



pbottom= pgh - pg { 2t,-t
ng

pvoaoo (—, wn ay

- 3
T n=1 n? cosh( ah)

Fn(t) . (3.15)

The fluid force in y-direction is
omy o w tanh ((Zn-i 1rh)
F o= ’ o) 2n-1

y w2 &2 (1)’ (b/a) Fon-1(t)

(3.16)

and the moment of the liquid about an axis parallel to the z-axis through the
center of gravity of the quiescent fluid is

mav 0 w
_ o 2n-1 (2n-L)7 h )
My= — Y Cempys | teob (———a
T n={
N 2 2 Al r (b (3.17)
(2n-1) 7rah cosh[( Zn;i) i h)] 2n-1

The velocity distribution in y-direction yields

1 (5 s+ Join (25
v=¥ 4 Yo Z ( 1) coshL'a (x +h)lsin Y o tt)
a o T nr h \ n
o n=1 ncosh(

which vanishes for the left container wall y = 0; for the right container wall
y =a it exhibits the value v, during the time interval 0 <t < t0 and the value

—vO during the time interval t0 <t< 2to, and vanishes for the time t > 2to,

as prescribed by the boundary conditions,

21



Gn( t) represents the time function as given in the infinite series of

the potential (3.10). The velocity distribution in x~direction is

1
o0
_ (x+h %e (-1)™ sinhl 8% (x +h)Jcos (%Fy)
u= - ve \-1 ) - : G (t).
a T nm h n
0 n=1 n cosh a—

The first term in these expressions indicates the motion of the liquid without
sloshing since the geometry of the container changes, The liquid has to flow
down during the time interval 0 <t < to and flow up again during the time in-

terval to <t< 21;0 as the wall moves back to its original position.

C. RESPONSE OF LIQUID DUE TO SINUSOIDAL PULSE

A sinusoidal pulse consisting of one single sine-wave (Fig. 11)
of the form Vosin (27 t/ to) , with to seconds duration as given by

v(t) = v0s1n(2 Tt/ to) for o=t= to,

o elsewhere

can be represented by the Fourier-Integral

2Vo oo[cos Qto - 1] cos Qt

V(t): 2 _ 3 9 dQ
to o (Q 4 q /to)
2vo o sin Q to sin Qt
+ — :
= J (@ -4r?/t 3 99
o o o

The potential is, therefore,
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Xz_ a { sin Qto sin Qt
= - = - = +
é(Y3X9t) a 6 Za (X2 ZhX)J (QZ - 4:7T 2/ tOZ)
cos Qt Ei—cos Qt :] 2vgh ©sinQ t sin Qt
0= ld @ O ° do
2 _ 2 2 -
(@ am /to) toa o Q%g? —47r2/1:02)

2v gh = cos Qt[i—cos Qt
t ; Q2 [92 4r 2/t Zj:ll de
o o

Z (- 1)n cosh[‘ﬁr‘(x+h)] (J’.U.L

) w | Q2%sin Qt_sin Qt
o n=1 n? cosh(n7r h )

2t

2
Q, cos Qt[i—cos Qtoj

2 _ 4.2 3 7 o2
(Q 47r/t0)(wn Q°)

dQ

The occurring integrals are

t
I%sin 2rt for t<t

o sin Qt sin Qto

for t>t
0
—tO 2w t
cos Qt [1 - cos Qt ] 4~ sin &m for t<t
0 i on: to o
o 0 .for t>t
o)
1:02 to 2rt\- 7t
foo sithsitho o = 2 —Zsin (to) nz]for t<t
2 2 _ 2 2 =
o Q(Q 47 /tO) t3
__9
8T for t >t
o

2 _ 4 2/+ 2 2
f (Q 47r/t0)(wn

_QZ)
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foo stinﬂtsinﬂto
= dQ =
I_ 2 2 _ 472/ 2
(wn Q)(Q W/to)

(0]

27

2 .

- o m T s1n(—'—t t) N
n . O

. . +
20 - ar?/t D [smwnt cos wnto] t (@ 2ar 0/t B fort<t0
n o o' 'n o}

w_ T
n - i

- T 7752
2((.0n 47 /to )
L J

cos w tsinw t fort>t
n no 0

© cos Qt [1—cos Qto]

f T o2 4.2/ 2y 4@ =
o Q°(Q2% -4n /to)
t 2 t3
0 o) . [2w t
+ = (t-t) - = <
Py (t to) Ton? sm(to> for t to
0 for t>t
(6]

2 -
f Q< cos Qt[i cos th] 4 -
o (0 '-0%) (¥ -4?/t?

£Tw wlsin (%ZL t) )
n sinw t * cos tsinw t |~ = fort <t
2(w 2-ar 2/t )P Yn “n “nol t (w -4r2/t %)
n ) o n o

| ?

*Tw
n

7 a2/ 2
2(wn 4 /to)

,:sinw t F sinw tcoswt] fort >t
n n no o

.



*With these results the velocity potential due to a sinusoidal pulse is

d(y,x,t) = v, [32[_- - - - (X2+2hx)]{} s1n(27rt)

.
2vgt’h < 8 2 T8 T 4mt 5
* _ 1
L & J

—2 Z (- 1)n cosh[%.ﬂr(x+h)] cos (%Ey)
t

G (t) (3.18)
o n=1 n® cosh (mr h) n
a
where
\
-Tw
n 271' sm(ztﬁ't)
7 3 3 ESInw t +sin w (t tj 5 9 35 fort<t
(_}n(t)= Z(wn a7 /t ) w . 4fn'/to) o
7rcon
—si + gi -
Z(w 47r2/t2) [smwnt smwn(t to)] f0rt>tO
J
The free fluid surface displacement is
B e e\ ey, YoM [V ety
gt 2a 610 t Zam 0 t }
o o o
3.1
2V0a 0 0 cos (%_E y) _ (3.19)
gy ), (1) R TR T) F (1)
n=1
where
2
-w %|cosw t-cosw (t-t) +§£2— cos 2 for t<t
n n n o} to t0 o}
F_(t) = '
wz[—cosw t+cosc.o(t-t)] for t>t
n n n o o
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The pressure in the container at a depth (-x) is given by

2pv7r 2
p= —-pgx- [’2%‘% ——(x2+2hx)]{}cos(-2—u)

)
PV, ght

{}[ () ]

2pa(%) o L—i)n cosh [nén (x +h) ] cos (1:111 y)
Tt
o)

nr h 1:\n(t) -
n=1 n? cosh( o ) (w 47r2/t 2)

At the tank wall y = 0 the pressure distribution is:

2pv T 1}
_ o fa 1 2rt \
Py=o" -pgx + to [6 + 2 (22 + 2hx)] {O cos( to )

[cos 2r t _]
. pvoghtO to

2am 0
_ vaoa i '(_1)n cosh [ﬂﬁn“(x+h)] F ()
Tt 4 2 nm h 9 4m? n
o n=1 n* cosh w ‘-3
a n t0

and at the container wall y = a the pressure distribution yields

20v T cos (2w t/ to)
_ o |a _ 1
py==a_ - pex - to [: 3 2a (X2 * th)] '

pv ght l:cos (27 t/ to) - 1]
%%

2T a 0
2
_ pvoa 3 cosh[ngr' (x + h)] T (1)
T to h )

n=1 n? cosh (ng ) wpt-47%/t 2) n
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The pressure at the bottom (x = -h) yields

; . 2pv07r 2 a . R cos (27 t/ to)
= pgh - -5 T o,
bottom t 2a 6 2a 0

o}

.PVOghtO [cos (27 t/ to) -1]

2T a 0

2pv a oo n
_ 0 Z —_ Ccos (a V> f‘n(t) . (3.23)

7Tto n=1 n? cosh(L—) (oo 2— 472/t 2)
a n o

The liquid force in y-direction is

cos (2nt/t) o ( - ) _
o - _V07rm 0 ) 4v0m Z tanh L2n_.1,)_th an_i(t)'
y t Tt ol h _ 2 4 2
o 0 o n=l =w a)(Zni) (w 471'/1:0)
(3.24)
and the fluid moment yields
v . cos (27 t/to)
M = maz o ) +
2 1:o 6 b
a 0 . 2 { 3
i { ((2n-1)7r h) }
((Zn—i)w h) cosh a
v w F, o (p| B2 +  (en-t)r B
+ __22 Z 2n-1 — 2‘__2_;‘_41\‘7 . . a
i ato n=1 (2n-1)" (@ 2n-1 ar /to) _‘
(3.25)

Finally, the velocity distribution in y-direction is
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1
Vv = Y sin 2rt -
V0 a 0 to

4vo i (-1) o cosh (?f‘ (x +#hl) sin (X ) G (1
Trt nm a y n "
o n=i n cosh (—a- h)

It vanishes for the left wall y = 0 and exhibits for the right container wall y =a

i
the expression V0 ax { } sin (27 t/ to) , as given in the boundary conditions.
0

In x-direction it is

1
(x +h) 2
u= -v xth sin(Wt>
0o a t
0 o)

o & ()" sinh Lné‘ (x+h))
to n=1 n cosh (n;rh)

+

cos (I—E y) Gn(t).

which satisfies the boundary condition at the container bottom x = -h.

SECTION IV. NUMERICAL EVALUATION AND CONCLUSIONS

The behavior of the liquid caused by harmonic excitation of one con-
tainer wall does not present any new effects compared to those of the excitation
of the total container. At the natural frequencies w n the free fluid surface

displacement, fluid force and moment, etc., exhibit singularities. For this
reason the number of graphs showing this type of excitation has been held to a
minimum. However, it is interesting to note that in the case of harmonic ex-
citation of one side wall the nodal line of the free fluid surface no longer re-
mains at y =a/ 2, as in the case of excitation of the total container. For an
excitation frequency @ below first resonance, the nodal line is in the right half
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of the free fluid surface, while above resonance it is in the left half of the free
surface. Figure 12 exhibits the shape of the free fluid for excitation frequencies
Q =0.9 W1, 1.1 w1 and 0.9 ws3.

The character of the height of the free liquid surface is well presented
by the formulas for double rectangular and sinusoidal pulses (Equations 3.11 and
3.19). The first one probably best describes the effect of the rocket firing.

Both excitations, however, should yield a similar liquid response in spite of the
different analytical expressions. The disturbance of one container wall acts
like a line source emitting waves of all wavelengths and frequencies. The
numerical results are given for a tank of length a = 250 feet and a liquid height
h =16 feet. The natural frequencies for this container are given in Table 1 for
n=1, 2, ..... 30.

A rectangular double pulse with a duration of one second is considered.
During the first half-second of the pulse the container wall moves to the right
and the liquid moves down the moving wall, while during the second half of the
pulse duration the container wall moves to the left and the liquid moves up,
forming a valley in front of the wall, After the pulse is completed, the liquid
is still moving toward the left, separating from the wall and starting to build
up wave packages. As the first wave of the package moves towards the left, it
decreases its height and the energy thus released is used to form other waves.
The first wave valley of larger wave length initially created by the motion of
the container wall moves faster away from the disturbanee than the waves of
smaller wave length in the wave package. The free fluid surface elevation of
the liquid in the container is shown in Figures 13 through 24 at various times;
the abscissa is (y/a) and the ordinate is X/ A

It can be seen that after completion of the pulse the liquid reaches a
height of X = 0. 41v0, while the valley exhibits a magnitude of X = -0. 042V0 and

is at a location y = 0.95a. One second afterward, the valley has moved to
y = 0.87a and has decreased its magnitude to about x = -0. 038VO. At the same

time, the peak amplitude of the wave which separated from the wall has moved
only by 0.02a and has decreased its amplitude to a value of X = 0.212 Vo As

time increases, other waves are generated on the right side of the container,
while the amplitudes of the present waves decrease continuously.

At three seconds, i.e., two seconds after the disturbing pulse has
been completed, the original valley has a depth of x = 0. 028 v, and is located
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further to the left at y =0.77a. A second wave has been formed very close to
the first one. The positive displacement of the first wave is reduced again to
a value of approximately X = 0.125 Vo while its negative displacement is

x= -0.18 VO. As time elapses, the waves move with different speeds toward

the other container wall. The first valley needs about eleven seconds to traverse
the container.

At time four seconds, the first valley has further decreased its mag-
nitude (to X = -0. 023v0) and is located at y = 0.69a. The magnitude of the

first wave has decreased to x = 0. 087v0 and is located at y = 0.87a. A third

wave has been formed and the second wave has a negative displacement of

X = -0.145a. As the first valley travels toward the left container wall its geo-
metric shape becomes flatter and its depth decreases. The first waves separate
more and more from the wave package, decreasing their amplitude, while others
are still formed. .

At the time of six to seven seconds after completion of the pulse, the
liquid on the left wall experiences a decrease in level. A few seconds later the
first wave package seems to be completed. The first valley finally reaches the
left wall at about eleven seconds with a magnitude of X =-0, 22 VO, is reflected

within two seconds and in the fifteenth second exhibits an amplitude of
x = 0.055 Vo The reflected wave is running toward the right into the first waves

of the wave package.

At this time, about one-tenth of the container surface from the right
hand wall is about at the equilibrium position X = 0. The first of the reflected
waves increases in magnitude, then decreases during the time the waves work
at each other. During that same time period, one-tenth of the liquid level on
the right hand side container wall sinks slowly to a value of X = -0. 01 v, at

twenty-one seconds, and forms a curved surface with more negative displace-
ment at the right container wall, while on the left container wall large liquid
oscillations (X = -0. OGVO) take place. With increasing time the liquid level on

the right container wall rises again to a level of about X = 0. 012vo, which

stretches to about one-fifth of the fluid surface area from the right container
wall into the liquid.
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During the time period from twenty-five totwenty-seven seconds,
the liquid surface rises at y = a but decreases at y = 0, 8a exhibiting an ampli-
tude at y = a of about X = 0. 036 \x then swings back to the negative side to an

amplitude of X = -0. 04 VO, and so on. On the left hand wall of the container the
amplitude increases to a value of about 0.12 v, as time proceeds, while in the

center of the container a '""confused'" wave motion takes place.

At forty-nine seconds the amplitude of the liquid at the right container
wall (y =a) exhibits a value X = 0.068 v, and shows a wave of larger wave

length in its vicinity. It should be noted, however, that for a fairly large value
of P 10 feet per second, the original wave height at separation from the

moving container wall would be 4.1 feet, while the initial valley is only 0. 42
foot in depth. The maximum wave height at the left container wall would be
about 0,7 foot.

Although the liquid motion can still be described for long periods
after completion of the excitation pulse, in reality the motion may have damped
out due to viscous forces of the fluid. Therefore, no further attempt is made
to ascribe real significance to the wave motion which takes place after the first
wave has reached the opposite container wall.

Before proceeding to the description of the liquid behavior at a fixed
location in the container, the results of the sinusoidal pulse excitation will be
investigated and discussed. It should again be mentioned that no energy dissi-
pation has been considered during the liquid motion, indicating that the energy
introduced into the system by the wall motion remains indefinitely in the liquid.
This, of course, is not in agreement with daily experience.

The response of the free fluid surface to a sinusoidal pulse of the
form v, sin (27 t/ to) of the container wall at y =a can also be presented at a

fixed time after the pulse. Most of the results will be omitted here and only a
few graphs are presented. (Figs. 25-30).
The total pulse duration is again t0= i second. During half of the

pulse duration the liquid will move down on the right container wall, while dur-
ing the second half of the pulse, when the right container wall moves toward the
left again to its initial position, the fluid moves up the wall. At time one and
one-fourth seconds, i.e., one-fourth second after the pulse has been completed,
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the valley exhibits a depth of X = ~0.032 v, (which for v, =10 feet per second

is a valley of 0.32 foot). The wave which moves away from the right hand wall
has height of ¥ = 0.25 v, (2.5 feet for VT 10 feet per second.

A comparison of these results with those for the rectangular pulse
shows that the valley and the first wave height exhibit about sixteen percent
larger values in the rectangular pulse case. Essentially the same liquid be-
havior is observed in these results. The first wave of the wave package moves
with decreasing height but increasing wave length toward the left wall of the
container, while new waves are added to the wave package as time elapses.
The first created valley and waves move faster toward the left container wall
than those of the interior of the wave package.

- At about six seconds the liquid level on the left container wall starts
to sink until the first valley which decreased its original magnitude of
X = -0.032 v, to a value below -0, 01 A increases it slightly again to about

X =-0,014 v, at eleven seconds, at which time the feﬂection starts. Approx-

imately one-tenth of the liquid level on the right container wall is in the
equilibrium position at that time. As the amplitude of the reflected wave on the
left container wall increases to positive values of magnitude X = 0. 035 Vo’ the

liquid on the right hand side performs no motion at all fromy =0.9a to y =a.

As time progresses, the reflected waves work against the wave pack-
age while the flat liquid surface area on the right hand side of the container
increases its area from y =a to y = 0. 85a and sinks like a straight surface.

In the center of the container a violent wave motion takes place. The wave height
on the left container wall increases to X = % 0.04 Vo while the right-hand side

surface curves to larger depths for y =a, swings first up at y = 0. 8a and is
then followed by an increase of surface elevation at y =a to a magnitude of about
¥=0,01 v, at twenty—five seconds. In the time proceeding, the free fluid sur-

face elevation at y = 0. 8a decreases to negative values, while it increases at the
right container wall to a magnitude of about 0. 024 v, at twenty-seven seconds.

On the left container wall the amplitude is increasing with time and shows a
value of X = 0,07 Vo at forty-two seconds. On the right container wall, a wave of

- larger wave length forms.
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The sequence of these motions can be seen in a 16mm movie, which
was produced from the computer results J It should be mentioned again, that
the liquid motion is subjected to internal as well as to wall friction; therefore,
the motion will be damped out soon and probably will not continue for the time
length indicated in the graphs or the film. It should also be mentioned that the
scale in the direction of the ordinate is greatly magnified. While the distance
between the left and the right container wall is 250 feet, the height of the waves
is only three to four feet.

The flow rate of 4000 feet® per second during the firing of the rocket
engines is simulated by a velocity v, of the right container wall of

v, = i.67/ to.

With this relation, the velocity amplitude v, of the right container wall during

a double rectangular pulse for a half-pulse duration of to seconds has to be

Vo © 6.7 ft/ sec. for to = % second
v, = 3.4 ft/ sec. for to = % second
v, 1.67 ft/ sec. for to = 1 second.

For a sinusoidal pulse, the value for v, can be obtained from

. to/ 2 2r t
16 ft x 150 ft. x [ v sin [Z2=)  at = 4000 3
(o} o 1:O

(the width of the container is 150 feet)

The motion picture can be obtained on a loan basis from F. Kramer of
MSFC, Test-Division.
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which yields

_1.67r _ 5.25

V0—1: Tt
0 0

With this result the velocity amplitude v, of the container wall during a

sinusoidal pulse of duration to seconds is obtained as

v, = 10.5 ft/ sec for to = % second
Vo © 5.25 ft/ sec for to = 1 second
v, 2.63 ft/ sec for to= 2 seconds.

For a rectangular .double pulse the original wave height at separation
of the disturbing container wall would be X = 2. 74 feet, while the maximum
liquid height at the left container wall is about 0. 48 foot for double-pulse dura-
tion of one second. For a half-second duration, these values represent only
the magnitude of 2. 2 feet and 0.37 foot respectively.

Similar results are obtained for a sinusoidal pulse; only those for the
one-second duration are presented here. The liquid height at the right container
wall is 1.3 feet at the time of pulse completion, while the maximum wave height
at the left container wall is about 0.37 foot. It may be mentioned that the
sinusoidal excitation mode with one-second duration (1:O =1 second) was used

for the film. TFigure 31 shows the surface elevation at the left wall, as a func-
tion of time.

The pressure distribution at the left container wall y = 0 is given for
the rectangular pulse with a total duration of one-half, one and two seconds
respectively, for various locations along that wall. The fluid height in this
case is hy =16 feet. For the pulse duration of one-half second, the pressure

p__ *t pgz
distribution l—{;u— at the left wall y = 0 is given at the free fluid surface,
o
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at half the depth of the liquid and at the container bottom (Shown in Figs. 37
through 39). It can be seen that no dynamic pressure exists during the first
few seconds that the wave is travelling from the right to the left container wall,
At about nine seconds the pressure is indicated for the first time and continues
to grow until it reaches (in a kind of sinusoidal fashion) a maximum of about
0.0035pa v, at the free fluid surface, 0.0014p a v, + p g 0.032a at half the

liquid depth and 0.0013 p v, a + pg 0.064a at the container bottom,

However, these peak pressures are reached at various times, as
seen in Figures 32-40 for various pulse durations. Withthe massdensity p = 0.973
Ibs sec?/ ft! and the specific weight of v = p g = 62,4 lbs/ ft®, the total peak
pressures at the left container wall for a rectangular double pulse are

(a) for t = I second by

11.7 lbs/ ft2 at x =0 (at the free fluid surface)
504.7 lbs/ fi> at x =-2%hy  (at half the depth)
1004.7 lbs/ ft2 at x = -hg (at the container bottom)

(b) for t, = % second by

21 lbs/ft? at x=0 (at the free fluid surface)

511.7 lbs/ ft* at x =-hg/, (at half the depth)
1008.4 1bs/ ft? at x = -hg (at the container bottom)

(c) for to =1 second by

27 lbs/ft*? at x=0 (at the free fluid surface)
518.51bs/ ft* at x =-hy/, (at half the depth)
1017 1bs/ ft? at x = -hg (at the container bottom)

It can be seen, that the pressure at the bottom of the container (Fig.
41) coincides with the pressure at the wall (y = 0 for x = -h) (Fig. 39). In the

Ppottom ~ P82
center of the containeraty = a/2, the pressure ( av p ) versus time
o

is presented in Figures 44, 45, and 48 for to= 1/ 4, 1/ 2 and 1 second. The

peak pressure at the container bottom at y =a/ 2 is, therefore,
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1002.7 1bs/ ft2 for to = 1/ 4 second
1005.2 lbs/ ft? for tO = 1/ 2 second
1009.6 lbs/ f? for to = 1 second .

The fluid force Fy is exhibited in the Figures 50 through 52 for

t = 1, 2 and 1 second. For t, = 1 second, the force per foot of tank width in

y-direction drops from a value of 113 pounds per foot to 61 pounds per foot.
For a tank width of 150 feet this yields a total force on the container in y-direc-
tion of 17000 pounds at t = 4 sec., i.e., exactly at the end of the pulse, and

9100 pounds at about 48.5 seconds. For a half-pulse duration to = 1 second,

the force per foot drops from 205 pounds per feet at t =1 second to 115 pounds
per feet at about 48.5 seconds. This corresponds to a total force 30, 800 pounds
and 17,200 pounds, respectively. For to =1 second, i.e., a pulse duration of

two seconds, the force per foot yields 263 pounds per foot at t = 2 seconds and
drops to 182 pounds per foot at about 49 seconds. This corresponds to a total
force of 39,400 pounds and 27, 300 pounds, respectively.

The liquid moment is presented in Figures 53 through 55. For
to = 1 second, the maximum value of the moment per foot of liquid is 6700

pounds, which corresponds to a total moment of 108 foot-pounds. For to = 3

second the maximum value is 14, 300 pounds corresponding to a total moment
about the center of gravity of the undisturbed liquid of 2, 142, 000 foot-pounds.
For 1:0 =1 second the maximum value of the moment per unit width of the con-

tainer is 26, 300 pounds. This corresponds to a total moment of MZ =3, 950, 000

foot-pounds.

SECTION V. RECOMMENDATIONS

According to the theory presented and its numerical evaluation, it
can be recommended that the walls of the container should be at least three
feet higher than the liquid height to prevent any liquid loss during the operation
of the system. The wall structure of the liquid reservoir should be designed
according to the maximum pressures listed on page 35.
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Since it was found that the liquid force and moments for pulses
caused by one-wall-excitation are considerably smaller than those of a har-
monic excitation of the complete container, further design specifications can
be found only by treating the total system of liquid and structure. This has
been done for various wind inputs and the result is presented in the report
"Interaction of Structure and Liquid in the Sound Suppressor System."

George C. Marshall Space Flight Center,
National Aeronautics and Space Administration
Huntsville, Alabama, September 30, 1965.
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TABLE 1.

NATURAL CIRCULAR FREQUENCIES

y-Direction

38

“n hy/a;  hy/a hy/ ay hi/a;, hy/a,
w; 0.2248 0.2558  0.2832 0.4293 0.4863
wy 0.4461 0.5051  0.5555 0.8354 0.9305
w3 0.6608 0.7422  0.8087 1.2024 1.3104
wg 0.8663 0.9634 1.0380  1,5243 1.6358
ws 1.0609 1.1666 1.2425  1.8028 1.8880
we 1.2435 1.3515 1.4236  2.0439 2.1104
wg 1.4136 1.5191  1.5842 2.2548 2.3042
wg 1.5716 1.6710 1.7276  2.4421 2.4774
wg 1.7180 1.8090 1.8569  2.6111 2.6358
wi 1.8538 1.9353  1.9748 2.7660 2.7829
wy 1.9797 2.0515 2.0835  2.9098 2.9213
wi 2.0970 2.1592  2.1848  3.0450 3.0526
|wis 2.2066 2.2598  2.2801 3.1730 3.1780
wig 2.3094 2.3545 2.3704  3.2951 3,2984
w1y 2.4062 2.4441  2.4565  3.4123 3.4144
wi 2.4979 2.5295  2.5390 3.5251 3.5265
wig 2.5851 2.6113  2.6186 3.6342 3.6351
wig 2.6683 2.6899  2.6955  3.7400 3.7406
|wig 2.7480 2.7657 2.7700  3.8427 3,8431
W 2.8247 2.8392  2.8424  3.9427 3.9429
wg 2.8987 2.9105  2.9129 4.0402 4.0403
W 2.9073 2,9798  2.9817  4.1353 4.1354
wog 3.0397 3.0474  3.0488 4,2283 4.2283
wag 3.1072 3.1135  3.1145 4.3192 4.3193

z-Direction

hy/ a,

0
1
1

1
.
2
2
2
2
2
2
3

3.
3
3
3
3
3
3
3
4
4

4
4

.5319
. 0044
.3837

. 6851

. 9306
.1389

. 4886
. 7869
. 9236
. 0539
. 4147
.6352
.8431
. 0403
.1354

.2283
.3193

.3223

.6425

1788
.2988

.5267

. 7406

. 9429

fluid height ratio




n hy/a;
w5 3.1730
wgg 3.2372
way 3.2999
wag 3.3613
wag 3.4214

' 3.4805

TABLE I.

y-Direction

hy/ay _hg/ay
3.1780 3.1788

3.2412  3.2418

3.3031  3.3036
1 3.3639  3.3642
3.4235  3.4238

3.4821  3.4823

h1= 10 feet
hy,= 12 feet
hy= 16 feet

hy/as

4.4083
4, 4956

4.5813
4.6654
4.7479

- 4.8291

( Concluded)

hy/ag

4.4084

4. 4957

4.5813

4.6654
4.7479
4,8291

4.8291

z-Direction

h_s/ az

fluid height ratio

4,4084

4.4957

4.5813

4.6654

4.7479

a; = 250 feet
a; = 150 feet
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SHAPE OF FREE FLUID SURFACE FOR HARMONIC EXCITATION
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FIGURE 25,

LIQUID SURFACE ELEVATION FOR SINUSOIDAL PULSE OF
ONE SECOND DURATION FOR VARIOUS TIMES
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FIGURE 56. PATH OF INTEGRATION FOR IMPROPER INTEGRALS
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APPEND IX

EVALUATION OF IMPROPER INTEGRALS
The integrals in the text are improper integrals and require the

evaluation of

$i(2) ¢*Pan
¢ with a > 0,

The path C of integration is the real axis and the semicircle around the origin
in the upper half plane (Fig. 56).

Evaluation is restricted to two of these integrals. The others are very similar
and do not require additional techniques.

The integral

[~ o] (=] o0

cos Qt sin Ot o sin @ (t+T) 1 sin @ (T-t)
f o de=4% | S e + 3 [ S do
o o o
because sin QT cos Qt = 1/2 sin @ (t +T) + i/ 2 sin Q(T - t). Essentially,
it is necessary to determine the value of the integral

~ sina Q
[ s

o dQ

(o]

since a can be taken to be either T+t or T-t. It is

° sina Q 1 P eiaQ 1 o e_iaQ
f —Q‘——dﬂ = a f o dQ - 21— f ) dQ.
[0} -00 [+ o]
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The integral

0 [+ o] o0
2 cos Qtsin Q T 1 Q2 sin @ (t+T) 1 Q2 sin Q (T-t)
. wi-g dQ—EOf Wl - Q2 dQ+§0f Z_qof do

yields essentially integrals of the form

+o00 00
[ e o
—c0 wZ - 92 hd

These integrals exhibit singularities on the integration path but their
principal value can be found by complex evaluation methods, The integration
path is taken along the real axis and a semicircle in the complex @ -plane. If
it can be shown that the integral along the semicircle vanishes with increasing
radius of the circle, the value of the integral along the closed path is the same
as that of the integral along the real axis from -« to +«., If the integral

¥ 1(2) 340
Cy

is considered with a > 0 and C; a semicircle around the origin in the upper half
plane, then f (Q) may satisfy the following conditions:

1. £(Q) be analytic for Im(2) > 0 except for a finite number of poles.

2. The absolute value of the function f () on the curve approaches zero
as the radius of the circle Cy approaches infinity.

lim ‘f(ﬂ)‘ =0 for 0=<argQ=m.
Q] w
Then
lim  $f(Q) etda = 0, if a>o0.
2] — ~ ¢
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Proof: With the second condition, it can be concluded with sufficiently large
|2] , that [£(Q)] < e forall @ on C; and € > 0.

With @ =Re - ¢ it is
leiQaI _ leia R(cos ¢ + ising)| _ 2R sing _ e—2a Ro/m
because of
z/ws%wsi for 0<g =u/2.
Therefore, it is

. T : . . .
ff(ﬂ) elQadQ l _ f f(Relm)elaRcosq).e—4Rs1nq)‘ RQelq)dqy
Cy

o
T . /2 .
<erR [ PR g,_nr [ o 2RSO,,

o o
/2
=2¢R f e—ZaR(p/wd(p:% [1—e aR:].

The limit value for R — « (e — 0) yields

lim ¥ 1) 2% ag
R — C1

1l
(=

For the type of integrals appearing in the text the function f(Q) is a
rational function, consisting of two polynomials h(Q) and g(Q). Itis

- h(Q)
f(e) g(Q)
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with at least the order of g(Q2) being larger by one than that of h(Q2), i.e.,

0 (g(Q)) = 0 (h(Q)) +1,
Therefore,
lim |fca)] = o.
If the function £ (Q) eIQa satisfies the following conditions:

1. £(Q) elaIQ is analytic in the upper half plane for ImQ = 0 except for
a finite number of poles.

2. () eIQa has only simple poles on the real axis.

3. lim ISZ fi(Q) elaﬂl =0 for O=argQ=nm
Q —
then
+eo 90 n m
[ f(e) e da=21i ), Res.(a,)+ir ), Res. (b,)
—_00 A:i }\' >\=1 7\'.

where the ah's are n poles in the upper half plane ImQ > 0 and the bh's are m
simple poles on the real axis for the function f () elﬂa.

Proof: The first part of this statement follows from Cauchy's Theorem and the
fact that the integral along the semicircle vanishes. Let us proof the second
part of the formula. At @ = * w are simple poles on the real axis. A semi-
circle of radius p is taken around 2 = +  in the upper half plane. The contour
C consists of the real axis from -R to +R (excluding the segments

+w -p to &w +p), the semicircles p and the semicircle C; in the upper half
plane having the radius R and the center at the origin. With Cauchy's Theorem,
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$r@) e dan = fr@) % aa+ fof@) e dn + 1
¢ o

(py)

+ (@) %2 4q
(02)

n
=2mi ), Res (a,)
A=t

where a_ are the poles inside the integration path C.

A
The integral In is

=W —Pq . w =Py . R .
1= [ t@ePan+ [ @) e Pan + [ fa)?

-R -w —Py w +py
Where P denotes the prinicpal value,

+c0 inQ
. _ i
liml =P [ i(e)e" do
—0c0

R — 00

pz =0
In considering the integral

+ f(2) €2 ag

(pq)
where, on the semicircle, £ can be written as

+Q=.w+pzel¢ (0 = =7).
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Since £(Q) e1a§2 has at 2 = w a simple pole, the Laurent expansion of the func-
tion can be written as

. o0
i) % = =R— 1 Y o @-w).
k=0

The residue at Q@ = w is by. Therefore,

. 0 o 0 . @
+1 + d

At@) 2P de = [byide + ) [ o ipf Sh+ 1) T do

- M

(Y T ©

=0ﬂ-

which yields with p — 0

im  {ft@) e?? ag) = -ir by.
Py —~ 0 (py)

The same is valid for other simple poles on the real axis and proves the above
statement.

The preceeding integrals satisfy the cited conditions, exhibit only
simple singularities on the real axis and are

o0
f elaQ
e o dQ@ = w1i (a >0)
and
o0
iaQ iaw -iaw
[ _2____1)__Qe do = 71 _eg - w8 = -ricosaw; (a>0)
- weQ” 2w 2w ? :

For a < 0 the integration path C  has to be taken in the lower half plane
(m = argQ = 27 ). Integration in clockwise direction then yields a negative

sign in Cauchy's expression.
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Now the first integral

+ i -+ + _3 +
fcossztsinQTdQ___ 1 ooe1(t T)stz—i "°el(tT)QdQ
de 8i Q 8i Q

0 © -
+eo  i(T-t)Q +oo  =i(T-t) Q
e 1 e
+ = e _ 4
8i_J Q de - - f g de

which yields fort < T

dQ =

o0
f cos Q tsinQ T
o Q

For t = T the third and fourth integral vanish together and the value of the inte-
gral is 7/ 4. For t > T the integrals cancel each other. It is, therefore,

% for t < T
© Qt sin Ot
[ PR gq = I for t=r1
Q 4
0
0 for t > T
The second integral to be evaluated yields
+ i(t+
foo QcosﬂtsinQTdQ__i_ wQel(t T)QdQ
= — e -
w? - o* 8i w?-Q
0 —c0
+ -i(t+ + i(T-
1 ® e i(t+T) @ d9+_1_ °°Qel(T t) @
8i Y w?- @l 8i w? - Qf

+ -i(T-
1 o0 Qe1(T t) Q

_ —— ——d.
8i w?- Q2 Q2
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This is fort < T

o0 . .

f v c%s Qtz,smﬂTdQ = -% cos w(t+T) - L cos w (t+T) - Ecosw(t-T)

6 w -8 8 8 8
—%cosw(t—T)= —% cos wt cos wT.

For t =T the third and fourth integral vanish together and the value of the inte-
gral is - 7/ 4 cos 2wt, while for t > T the exponential function exhjbits in the
third and fourth integral a negative value for (T-t) in the exponent, which results
in a change of the integral path from the upper to the lower half plane and vise

versa for the fourth integral. It is, therefore,

o0
f 2 002 £ tim'ﬂ T dQ = - Z cos w(t+T) - T cos w (t+T) + us cos w (t-T)
0 w - 8 8 8 8

+ %cos w (t-T) = %sinwt sinwT fort>T

It is, therefore,

T
) 2 for t< T
cos 2 tsinQ T _ T _
f o de = 4 for t=T
0
0 for t>T
r—% coswtcos w T for t<TN
) QtsinQ T
[ == dg = (-7 coszout for t=T
0 w®=-Q 4
zr'-'sincutsinc..)T for t>T
L 2 J

The other integral expression can be evaluated in a very similar way (see also
Ref. 6).
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